应用背景江苏省江都第三抽水站装机ZL13.5—8大型立式水泵配套1600kW立式可逆变极电机10台套,水泵叶轮直径D=2.0m,设计扬程8m,设计流量13.5m3s。水泵采用双毕托管式油润滑合金轴承,轴承设于导叶体轮毂内,轮毂下部采用梳齿迷宫环密封装置,轮毂上部与对开型后导水锥及固定的护管连接,护管设于泵轴外侧并穿出泵盖,护管外壁与泵盖间设静水封,护管内侧与泵轴之间与大气相通,阻止泵内水体进入导叶体轮毂腔损坏油轴承。
滚动轴承的失效形式多种多样,但其中多数失效形式迄今尚无可用的寿命计算方法,只有疲劳寿命、磨损寿命、润滑寿命和微动寿命可以通过计算的方法定量地加以评估。
1、疲劳寿命 在润滑充分而其他使用条件正常的情况下,滚动轴承常因疲劳剥落而失效,其期限疲劳寿命可以样本查得有关数据,按规定的公式和计算程序以一定的可靠性计算出来。
2、磨损寿命 机床主轴承取大直径以保证其高刚度,所配轴承的尺寸相应也大,在其远末达到疲劳极限之前,常因磨损而丧失要精度以致无法继续使用,对这类轴承必须用磨损寿命来徇其可能性的服务期限。实际上,{HotTag}现场使用的轴承大多因过度磨损而失效,所以也必须考虑磨损寿命问题。
3、润滑寿命 主要对于双面带密封的脂润滑轴承,一次填脂以后不再补充加脂,此时轴承有寿命便取决于滚脂的使用寿命。
4、微动磨蚀寿命 绞车、悬臂式起微型重机和齿轮变速箱以及汽车离合器等机构中的轴承,在其非运转状态下受到振动负荷所产生的微动磨蚀损伤。往往会发展成轴承失效的主导原因,对这类机构中的轴承,有时需要计算其微动磨蚀寿命。
为了提高生产效率和改善零件的加工质量而发展起来的高速和超高速加工,现在已成为机床发展的一个重大趋势。一个反应灵敏、高速轻便的驱动系统,速度要提高到40-50m/min以上,加减速也要求提高到25-50m/s2,传统的“旋转电机+滚轴丝杠”的传动形式显然是不行的,这是由它自身的弱点决定的,因为中间传动环节的存在首先使刚度降低,弹性变形可使系统的阶次变高,从而系统的鲁棒性降低,伺服性能下降。弹性变形更是数控机床产生机机械谐振的根源。其次中间传动环节的存在,增加了运动体的惯量,使得位移和速度响应变慢。另外诸如间隙死区、摩擦、误差积累等因素,使得这种传统的方式所能达到的最高进给速度为30m/min,加速度仅3m/s2。
轴承信息港的报道:而直流电机直接驱动所具有的优点则恰恰可以弥补传统传动方式的不足,其速度是滚轴丝杆副的30倍;加速度是滚轴丝杆副的10倍,最大可达10g,刚度提高了7倍;另外,直线电机直接驱动工作台,所以无反向工作死区;由于电枢惯量小,所以由其构成的直线伺服系统可以达到较高的频率响应(如100Hz)。
通过上述的比较,在高速和超高速精密加工中,直线电机的应用有着广泛的前景。目前,满足机床大推力进给部件要求的主要是交流直线电机,从励磁方式分,可分为永磁(同步)式和感应(异步)式两种。永磁式的次级(定子)是永久磁钢,在机床上应用时,需在机床的床身上铺设永久磁钢,在工作台下部反装着三相通电绕组,形成直线电机的初级(动件)。而感应式初级与永磁式相同,但其次级是用电栅条来代替磁钢,相当于把感应式旋转电机的“鼠笼”沿其圆周展开。
永磁式直线电机在单位面积推力、功率因数、可控性等方面均要优于感应式,但价格较昂贵,安装调试、防尘等方面均不如感应式。美国Ingersoll铣床公司生产的高速卧式加工中心HVM800的X、Y、Z轴均采用永磁式同步直线电机,最大进给速度为76.2m/min,加速度α=1~1.5g。
感应式直线电机在性能上已接近于永磁式电机的水平,再加上其自身的优点,所以越来越受到欢迎。在应用方面典型例子是德国Ex-cell-o公司开发的XHC240型高速卧式加工中心,三个进给轴均采用Indramat公司的感应式直线电机直接驱动进给部件,快速移动速度最高为60m/min,最大加速度为1g。轴承信息港的报道