我要采购我有需求:
当前位置: 首页 » 轴承资讯 » 轴承百科 » 正文

TM聚合物在主轴轴承上的应用

放大字体  缩小字体 发布日期:2018-11-05  浏览次数:4 选择视力保护色:

[摘要]  轴承信息港数据获悉:在高速离心机行业,电主轴广泛地用于离心分离、离心粉碎、离心雾化、离心干燥、离心试验等高速离心领域。

   轴承信息港数据获悉:在高速离心机行业,电主轴广泛地用于离心分离、离心粉碎、离心雾化、离心干燥、离心试验等高速离心领域。大大提高了离心速度,增强了离心效果,可提高离心物体的细化度和分离精度,提高了离心效率,广泛用于化工行业和食品加工行业,是新一代高速离心机的替代产品。
  
  在车加工行业,使用电主轴最高转速可达到12000r/min,并且在额定转速范围内可实现无级调速。高速车削用电主轴在加工中能获得高的加工精度和表面粗糙度,特别适用于铝、铜类有色金属零件的加工。电主轴安装在高速、高精度数控车上用宝石刀加工铝合金工件表面,粗糙度可小于0.1μm,在一些零件的加工中,可以省去磨削或抛光工序,大大提高了生产效率。
  
  在其他制造行业,如精密铜管加工行业,高速电主轴也得到了广泛的使用。精密铜管主要是用做空调、冰箱等的热交换器,为了节省铜材和增加散热面积,铜管往往被挤压成内螺纹形,而挤压内螺纹主要依靠高速旋辗用电主轴。以前国内只有少量从日本和芬兰进口的高速旋辗用电主轴,价格非常昂贵,维护也不方便。我国从1997年开始开发生产高速旋辗用电主轴(图5),已形成了比较完整的系列,现在已经基本占领了国内精密铜管加工行业。电主轴采用陶瓷球轴承支承,采用油气润滑,其最高转速可达到40000r/min,目前国内采用的转速一般为35000r/min,而世界其他先进国家使用的转速大多停留在24000r/min,生产效率远远低于我们。我国高速旋辗用电主轴从无到有,到现在已经处于国际领先水平,我国的精密铜管加工行业也从比较落后到成为世界最大的精密铜管加工国,高速电主轴的应用和发展起到了非常重要的作用。现在,我国高速旋辗用电主轴凭借着价格低、技术先进、维护方便等优点,每年生产销售数百套,并且批量出口到国外。
  
  高速电主轴替代电动机和精密齿轮增速器组成的高速动力源来拖带试验机是高速电主轴的又一大用途。不论是在军用还是民用领域,高速电主轴已广泛用于高速深冷液氢轴承试验机、高速高温燃汽轮机点火装置试验机、高速卡盘试验机以及石油行业的高速密封件试验机。其实,高速电主轴不仅仅应用于以上方面,在需要高速旋转的地方,都有可能使用电主轴。
  
  我国从1958年开始研制高速电主轴,特别是近20年来,高速电主轴得到了广泛的应用,从而促进了我国制造业的快速发展。但是,同国外高速电主轴先进制造厂商相比,我们还有相当大的差距,我国高速电主轴的开发设计和生产还需要进一步的发展,目前的差距和发展方向主要在以下几个方面。
  
  首先,虽然我国高速电主轴的开发和生产已经有近50年,但始终没有一个统一的国家或行业标准。各个生产厂根据自己的需要开发生产各自的电主轴,在电主轴系列、检验标准、命名方法甚至外形安装尺寸上,各个厂家都不一样,使用户在选用时造成很大的不便,在数控机床电主轴方面,多数情况下,用户只能定做,交货期长,价格高,质量不稳定。目前,国家有关管理部门正在制定相应的行业标准,这将有力地促进我国高速电主轴行业的发展。
  
  轴承信息港数据获悉:其次,由于我国基础工业比较薄弱,在材料和热处理方面有一定差距,特别是在主轴加工的关键工序、关键零件的制造技术也有一定差距。由于受到机床的限制,许多零件在表面粗糙度、形位公差等方面不如国外先进水平。在高速电主轴电机所用原材料上,我国目前相当落后,参数方面与国外先进水平有一定差距。电主轴电机设计方面,同样外径尺寸下,功率、效率相差较大。如德国KAVO公司主轴电机功率与国内电主轴电机相比,功率相差30~50%左右。由于高速电主轴大多采用轴承支承,在高速高精度轴承制造方面,我们的差距更大。虽然我国已经能够生产高精度高转速的P4级角接触轴承,但形成批量产品的厂家很少,轴承的精度和质量还不是很稳定。决定电主轴最高转速和刚性的指标主要是轴承的dmn值(轴承节圆直径与转速的乘积),国外目前已经达到了250万,而国内只能达到200万,与国外相差甚远。国外现在普遍采用陶瓷球轴承,而我国的陶瓷球轴承无论是产量还是质量还都不稳定,这也制约着我国电主轴的发展,影响了我国电主轴的质量和寿命。在轴承润滑材料和技术方面,电主轴一般采用油脂、油雾和油气三种方法。高速润滑油脂一般采用以矿物油为基础的锂基脂,国内的研制还处很落后,一般都选用进口产品。油雾润滑电主轴在国内使用最为广泛,但由于对环境有一定的污染,国外已不再使用,而采用油气润滑,根据国外的发展趋势,国内油雾润滑电主轴也将会逐步被淘汰。油气润滑系统具有很多优点,但价格昂贵,国内生产点又少,技术指标也和国外相差甚远,同时对电主轴轴承运行时需要的实际供油量,我们还处在摸索阶段,这也制约着电主轴技术的发展。因此,只有大力加强我国高速、高精度轴承及其相关技术的发展,才能使高速电主轴得到快速的发展。
  
  在电主轴的其他相关技术方面,我们也存在不小的差距。高速加工中心电主轴我国虽然已经能够小批量生产,并且已经装备了一些国产机床。但加工中心电主轴需要采用闭环矢量控制变频器进行驱动,而我国开发出的的闭环矢量控制变频器,性能还不稳定。如果采用国外的变频器,大多要采用国外的电机配套,我们的电主轴就没有了自己的技术发展。加工中心电主轴所使用的磁性编码器国内不能生产,只能选用进口。我国虽然开发出了最高转速24000r/min的中心电主轴,但轴端的HSK刀柄及其检具也必须依赖进口。特别是国内还没有能够达到24000r/min的刀具,所以这种电主轴还得不到实际应用。国内数控加工中心的上位机基本上是西门子和发那科系统,由于技术保密,这些公司不提供通信协议。因此,国内开发的加工中心电主轴驱动系统只能提供模拟接口,不能提供数字接口,这更加影响了加工中心电主轴在国内数控机床中的应用。只有加大相关技术的发展,国内高速电主轴才能得到相应的发展。
  
  随着我国经济的快速发展,中国逐步成为世界制造业的基地,制造业正朝着高速、高效、高精度和高智能化方向发展,高速电主轴的应用范围将越来越广泛。同时,加大高速电主轴开发技术和制造的发展,提高产品竞争,才能更好的促进我国制造业的发展,使中国真正成为世界制造业的中心。
  
  对主轴轴承进行5000r/min长时间工作采用了恒温油箱冷却措施,在以往的检修过程中,我们对主轴的水平度、同心度、光洁度及瓦面的研刮都严格按照厂方及有关规程的要求去处理。冷却水的水质、水压也符合标准,但温度就是降不下来。最后,在1997年12月,厂方王守忠工程师来到现场指导、考察,发现主推力轴承在内部的设计上存在着一些问题:1.冷却器容量太小,未能及时带走轴承内部的大量余热,造成温度升高。2.推力盘主镜板的垂直度不够,其中有一台机组主要是因为推力头松动所致。有些地方高出0.5mm,有的地方却低陷0.15mm,造成推力瓦面有些地方受力过重,而有些地方根本不受力,从而使受力面的温度经过一定时间的运转摩擦后,温度逐渐升高,最终导致烧瓦事故。3.推力轴承没有专门设置冷却油泵,冷却油的循环主要靠光滑完整的推力球的高速旋转而带上一部分冷油,未能产生温度降低的效果。4.上、下轴瓦的进油孔过小,使冷油的流通大大受阻,故也不能起到降温效果。
  
  轴承信息港数据获悉:针对存在的4个主要缺点,我们采取了相应的措施:1.在轴承内空闲的位置加装冷却器,冷却器由空心铜管制成,而且在铜管外边用车床加工成螺纹状,便于散热。2.对于推力头松动,因为现场处理较为困难,我们连同主轴一起送回厂家修理。修理后的镜板垂直度最大相差在±0.05mm以内,这使推力瓦受力均匀。3.因没有专门的油泵,我们在推力球的外侧加工了四个对称的汤匙状的小孔,旋转起来把大量的冷油从下面带上来,冷却效果大为改善。4.上、下轴瓦的进油孔由原来的10mm改钻为14mm,使带上来的冷油更加畅通无阻。但发现主轴噪声增大,对于炼铁厂,带式运输机的工作效率是直接影响到钢铁产品的质量、产量和冶炼过程流程的关键技术环节。而托辊的支承特性及使用寿命对带式输送机的性能参数(运距、运量、成本和噪声等)和工作可靠性影响很大。长期以来,炼铁厂带式运输机的托辊采用支承为滚动轴承+润滑脂;由于炼铁厂皮带运输机工作在露天和环境较恶劣,较大的粉尘和矿渣温度的工作环境使滚动轴承容易产生阻塞或润滑脂干涩而失效。失效的轴承限制了托辊的自由旋转而使皮带与托辊表面产生相对滑动;这不仅加速了托辊的磨损,而且增加了运输机带与托辊间的运动阻力、运输机的转动噪声和运输带的损坏[1]。若以托辊支承失效为标准衡量目前炼铁厂的托辊寿命,采用滚动轴承+润滑脂支承的托辊使用寿命约为7200小时(约为10个月)。此外,由于炼铁厂带式运输机多为长距离和高空运输,因此,实现其运行过程维护具有很大的难度和安全性隐患;由此,解决其托辊的长寿命和免维护问题,不仅能节约大量的润滑脂费用,而且为实现冶炼原料运输过程的安全、高效和静音的绿色物流作业提供技术保证。降温效果差,主轴转速远未达到8000r/min的设计要求,并发现个别轴承滚珠、滚道有烧伤和拉毛现象。根据滚珠的离心力FC及陀螺力矩MG公式得知,滚珠在高转速条件下,离心力和陀螺力矩均成比例增大,即
  
  FC∝wc2
  
  MG∝wcwbsinβ
  
  式中wc——滚动公转角速度,(°)
  
  wb——滚动自转角速度,(°)
  
  β——公转角与自转角之间的夹角,(°)
  
  轴承滚珠与滚道之间相对滑动产生的摩擦热也随之增大,出现了烧伤、拉毛等现象。
  
  为此,我厂做了采用TM聚合物润滑主轴轴承的试验。TM聚合物为一种采用高科技生产的超微化金属元素悬浊液。
  
  为检验TM聚合物的润滑性能,特采用如图1所示装置进行耐磨、耐压试验。
  
  1.砝码(1磅/单个);2、3.连杆;4.轴承滚柱;5.轴承外环;6.电动机;7.基座
  
  注:此试验装置压力放大比为20倍
  
  试验条件:室温20℃,滑动速度10m/s;润滑油:含10%TM聚合物的20#主轴透平油(注:滚柱与外环咬合死为一次试验。试验结果见表1)。
  
  处理试验结果时(除去两个极值),含与不含TM聚合物时压力比值为9.4∶1,而压痕面积比值为1∶12.1。
  
  采用TM聚合物润滑油做提速试验的主轴结构如图2所示,试验结果见表2。
  
  通过表2试验结果得知,采用TM聚合物润滑油润滑主轴轴承完全能够满足高速型主轴的设计噪声和温升的技术要求。
  
  通过试验结果可知,采用TM聚合物润滑油润滑可显着提高镀镍处理的滚柱与外环的抗咬合能力,同时降噪效果显着。轴承信息港数据获悉

打印刷新返回顶部 关闭
声明:轴承信息港(www.zcxxg.com)登载TM聚合物在主轴轴承上的应用仅出于传递信息目的,并不意味着赞同其观点或证实其描述,亦不保证准确无误,版权/责任归其所有权人,若您认为有问题/差错请联系我们。转载请联系所有权人。